

Class - X
Subject - English

[:NQ]

[:Q.1] Ramesh was hungry so (cry).
[:A] were crying
[:B] was crying
[:C] has cried
[:D] had cried
[:ANS] B

[:INFO] mp=4,mn=1,type=MCQ

[:NQ]

[:Q.2] Did you NCC last year? (Join)
[:A] joining
[:B] joined
[:C] join
[:D] been joining
[:ANS] C

[:NQ]

[:Q.3] The Police (Patrol) the streets in the night.
[:A] patrol
[:B] was patrolling
[:C] is patrolling
[:D] were patrolling
[:ANS] B

[:NQ]

[:Q.4] The Principal (check) the uniform tomorrow
[:A] were checking
[:B] are checking
[:C] did check
[:D] will check
[:ANS] D

[:NQ]

[:Q.5] He (work) ten hours everyday.
[:A] worked
[:B] were working
[:C] shall working
[:D] shall be working
[:ANS] A

[:NQ]

[:Q.6] These questions are (appear) to be difficult.
[:A] appear
[:B] appearing
[:C] appeared
[:D] been appearing
[:ANS] B

[:NQ]

[:Q.7] Did Deepanshu not (leave) for Kolkata last night?
[:A] leaves
[:B] leaved
[:C] been leaving

[:D] leave
[:ANS] D

[:NQ]
[:Q.8] Rakhi and Priya were not (wash) their clothes.
[:A] washing
[:B] washed
[:C] was washing
[:D] been washing
[:ANS] A

[:NQ]
[:Q.9] He had been (read) since morning.
[:A] read
[:B] reads
[:C] did read
[:D] reading
[:ANS] D

[:NQ]
[:Q.10] Geeta sleeping for two hours when I went there.
[:A] had
[:B] had been
[:C] have been
[:D] have
[:ANS] B

[:NQ]
[:Q.11] I shall complete this task night.
[:A] in
[:B] at
[:C] before
[:D] on
[:ANS] C

[:NQ]
[:Q.12] I jumped the lake to save the little boy.
[:A] into
[:B] under
[:C] in
[:D] within
[:ANS] A

[:NQ]
[:Q.13] He went to temple me.
[:A] with
[:B] to
[:C] by
[:D] on
[:ANS] A

[:NQ]
[:Q.14] We were sitting the wall.
[:A] at
[:B] beside
[:C] before
[:D] after

[:ANS] B

[:NQ]

[:Q.15] I agree you.

- [:A] of
- [:B] to
- [:C] with
- [:D] for

[:ANS] C

[:NQ]

[:Q.16] Will you reach home 8 o' clock?

- [:A] on
- [:B] by
- [:C] at
- [:D] to

[:ANS] B

[:NQ]

[:Q.17] Wait he arrives.

- [:A] by
- [:B] till
- [:C] into
- [:D] within

[:ANS] B

[:NQ]

[:Q.18] Let it remain both of us.

- [:A] between
- [:B] within
- [:C] in
- [:D] besides

[:ANS] A

[:NQ]

[:Q.19] Distributes the sweets the beggars.

- [:A] among
- [:B] within
- [:C] in
- [:D] between

[:ANS] A

[:NQ]

[:Q.20] We went to the picnic train.

- [:A] with
- [:B] in
- [:C] by
- [:D] to

[:ANS] C

[:END]

[:NQ]

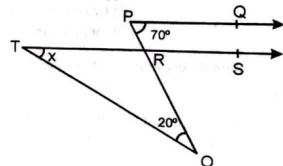
[:Q.1] Mirror image of points (3, 9) on x-axis is :

- [:A] (-3, 9)
- [:B] (9, 3)
- [:C] (3, 9)
- [:D] (3, -9)

[:ANS] D

[:INFO] mp=4,mn=1,type=MCQ

[:NQ]


[:Q.2] A triangle can have :

- [:A] Two right angles
- [:B] Two obtuse angles
- [:C] All angles more than 60°
- [:D] Two acute angles

[:ANS] D

[:NQ]

[:Q.3] In the given figure $PQ \parallel RS$, $\angle QPR = 70^\circ$, $\angle ROT = 20^\circ$. Then, find the value of X.

- [:A] 20°
- [:B] 70°
- [:C] 110°
- [:D] 50°

[:ANS] D

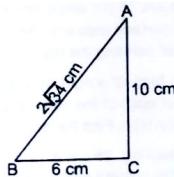
[:NQ]

[:Q.4] If $(x + a)$ is a factor of $x^2 + px + q$ and $x^2 + mx + n$ then the value of a is :

- [:A] $\frac{m-p}{n-q}$
- [:B] $\frac{n-q}{m-p}$
- [:C] $\frac{n+q}{m+p}$
- [:D] $\frac{m+p}{n+q}$

[:ANS] B

[:NQ]

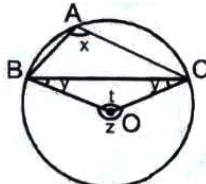

[:Q.5] If $x^2 - 4$ is a factor of $2x^3 + ax^2 + bx + 12$, where a and b are constant. Then the values of a and b are :

- [:A] -3, 8
- [:B] 3, 8
- [:C] -3, -8
- [:D] 3, -8

[:ANS] C

[:NQ]

[:Q.6] In the given figure, $\triangle ABC$ is revolved about AC and a solid in the shape of cone is formed. The volume of the cone is :

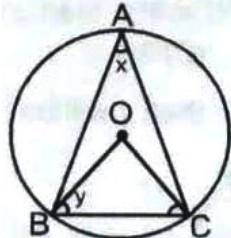


- [:A] $24\sqrt{34} \pi \text{ cm}^3$
- [:B] $120 \pi \text{ cm}^3$
- [:C] $12\sqrt{34} \text{ cm}^3$
- [:D] $240 \pi \text{ cm}^3$

[:ANS] B

[:NQ]

[:Q.7] A, B and C are three points on the circle whose centre is O. If $\angle BAC = x$, $\angle CBO = y$, $\angle BOC = t$, reflex $\angle BOC = z$ then :



- [:A] $x + y = 90^\circ$
- [:B] $x - y = 90^\circ$
- [:C] $t + 2y^\circ = 90^\circ$
- [:D] None of these

[:ANS] B

[:NQ]

[:Q.8] O is the centre of the circle. BC is a chord of the circle and point A lies on the circle. If $\angle BAC = x$, $\angle OBC = y$, then $x + y$:

- [:A] $> 90^\circ$
- [:B] $= 90^\circ$
- [:C] $< 90^\circ$
- [:D] $> 180^\circ$

[:ANS] B

[:NQ]

[:Q.9] The graph of line $5x + 3y = 4$ cuts Y-axis at the point :

- [:A] $\left(0, \frac{4}{3}\right)$
- [:B] $\left(0, \frac{3}{4}\right)$
- [:C] $\left(\frac{4}{5}, 0\right)$

[:D] $\left(\frac{5}{4}, 0\right)$

[:ANS] A

[:NQ]

[:Q.10] If $E_1, E_2, E_3, \dots, E_{N-1}, E_N$ are the N elementary event associate to a random experiment then $P(E_1) + P(E_2) + P(E_3) + \dots + P(E_{N-1}) + P(E_N) =$

[:A] 1

[:B] 0

[:C] $\frac{1}{2}$

[:D] None of these

[:ANS] A

[:NQ]

[:Q.11] In $a^2 - b^2$ trials of a random experiment, if an event A happens $a + b$ times then the probability of happening of event A is given by :

[:A] $a - b$

[:B] $\frac{1}{a+b}$

[:C] $a + b$

[:D] $\frac{1}{a-b}$

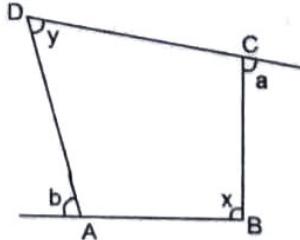
[:ANS] D

[:NQ]

[:Q.12] The diagonals of a rectangle ABCD meet at O. If $\angle BOC = 44^\circ$, then $\angle OAD$ is :

[:A] 68°

[:B] 44°


[:C] 54°

[:D] None of these

[:ANS] A

[:NQ]

[:Q.13] Sides BA and DC of quadrilateral ABCD are produced as shown in figure, the $a + b$ is equal to :

[:A] $x - y$

[:B] $x + y$

[:C] $x + 2y$

[:D] None of these

[:ANS] B

[:NQ]

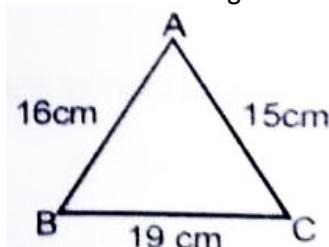
[:Q.14] The diagonal of a cube is $6\sqrt{3}$ cm. Find its volume.

The following are the steps involved in solving the above problem. Arrange them in sequential order.

(a) \therefore Volume of the cube = a^3 cm 3 = $(6)^3$ cm 3 = 216 cm 3

(b) Then, diagonal of the cube = $a\sqrt{3}$ cm
 (c) From the given data $a\sqrt{3} = 6\sqrt{3} = a = 6$ cm.
 (d) Let the side of the cube be a cm.
 [:A] dcba
 [:B] dbca
 [:C] dacb
 [:D] dbac
 [:ANS] B

[:NQ]


[:Q.15] $\triangle ABC = \triangle PQR$. If $AB = 5$ cm, $\angle B = 40^\circ$ and $\angle A = 80^\circ$, then which of the following is true?

[:A] $QP = 5$ cm, $\angle P = 60^\circ$
 [:B] $QP = 5$ cm, $\angle R = 60^\circ$
 [:C] $QR = 5$ cm, $\angle R = 80^\circ$
 [:D] $QR = 5$ cm, $\angle Q = 40^\circ$

[:ANS] B

[:NQ]

[:Q.16] In the given figure, which of the following statement is true?

[:A] $\angle B = \angle C$
 [:B] $\angle B$ is the greatest angle in triangle
 [:C] $\angle B$ is the smallest angle in triangle
 [:D] $\angle A$ is the smallest angle in triangle
 [:ANS] C

[:NQ]

[:Q.17] In triangle if each side of triangle is halved then what is the % change in its area.

[:A] 75% increase
 [:B] 75% decrease
 [:C] 25% increase
 [:D] 25% decrease

[:ANS] B

[:NQ]

[:Q.18] The average of n numbers $x_1, x_2, x_3, \dots, x_n$, is A. If x_1 is replaced by $(x + a)x_1$, x_2 is replaced by $(x + a)x_2, \dots, x_n$ is replaced by $(x + a)x_n$; then the new average is :

[:A]
$$\frac{(n+1)A + x_n}{n}$$

 [:B]
$$\frac{(x-1)A + nx_n}{n}$$

 [:C]
$$\frac{nA + 1(n+1)x_n}{n}$$

 [:D]
$$(x + a)A$$

 [:ANS] D

[:NQ]

[:Q.19] If $x = \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ and $y = \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ the value of $x^2 + xy + y^2$ is :

- [:A] 99
- [:B] 100
- [:C] 1
- [:D] 0

[:ANS] A

[:NQ]

[:Q.20] Simplify : $\frac{2}{\sqrt{5}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{2}} - \frac{3}{\sqrt{5}+\sqrt{2}}$.

- [:A] 1
- [:B] 0
- [:C] 10
- [:D] 100

[:ANS] B

[:END]

[:NQ]

[:Q.1] A particle is moving in a circular path of radius r . The displacement after half a circle would be:

- [:A] Zero
- [:B] πr
- [:C] $2r$
- [:D] $2\pi r$

[:ANS] C

[:INFO] mp=4,mn=1,type=MCQ

[:NQ]

[:Q.2] Which of the following statement is correct regarding velocity and speed of a moving body?

- [:A] Velocity of a moving body is always higher than its speed
- [:B] Speed of a moving body is always higher than its velocity
- [:C] Speed of a moving body is its velocity in a given direction
- [:D] Velocity of a moving body is its speed in a given direction

[:ANS] D

[:NQ]

[:Q.3] A car of mass 1000 kg is moving with a velocity of 10 m/s. If the velocity-time graph for this car is a horizontal line parallel to the time axis, then the velocity of the car at the end of 25 s will be:

- [:A] 40 m/s
- [:B] 25 m/s
- [:C] 10 m/s
- [:D] 250 m/s

[:ANS] C

[:NQ]

[:Q.4] A car is travelling at a speed of 90 km/h. Brakes are applied so as to produce a uniform acceleration of -0.5 m/s^2 . Find how far the car will go before it is brought to rest?

- [:A] 8100 m
- [:B] 900 m
- [:C] 625 m
- [:D] 620 m

[:ANS] C

[:NQ]

[:Q.5] A ball is dropped from a height of 10 m.

- [:A] Its potential energy increases and kinetic energy decreases during the fall.
- [:B] Its potential energy is equal to the kinetic energy during the fall.
- [:C] The potential energy decreases and the kinetic energy increases during the fall.
- [:D] The potential energy is zero and kinetic energy is maximum while it is falling.

[:ANS] C

[:NQ]

[:Q.6] The work done is zero if

- [:A] The body shows displacement in the opposite direction of the force applied.
- [:B] The body shows displacement in the same direction as that of the force applied.
- [:C] The body shows a displacement in perpendicular direction to the force applied.
- [:D] The body moves obliquely to the direction of the force applied.

[:ANS] C

[:NQ]

[:Q.7] A goalkeeper in a game of football pulls his hands backwards after holding the ball shot at the goal. This enables the goalkeeper to:

- [:A] Exert large force on the ball
- [:B] Increases the force exerted by the ball on hands
- [:C] Increase the rate of change of momentum
- [:D] Decrease the rate of change of momentum

[:ANS] D

[:NQ]

[:Q.8] In a rocket, a large volume of gases produced by the combustion of fuel is allowed to escape through its tail nozzle in the downward direction with the tremendous speed and makes the rocket to move upward. Which principle is followed in this take off of the rocket?

- [:A] Moment of inertia
- [:B] Conservation of momentum
- [:C] Newton's third law of motion
- [:D] Newton's law of gravitation

[:ANS] B

[:NQ]

[:Q.9] The speed of a car weighing 1500 kg increases from 36 km/h to 72 km/h uniformly. What will be the change in momentum of the car?

- [:A] 15000 kg km/h
- [:B] 15000 kg m/s
- [:C] 54000 kg m/s
- [:D] 54000 g m/s

[:ANS] B

[:NQ]

[:Q.10] is called the energy currency of the cell

- [:A] Endoplasmic reticulum
- [:B] Oxygen
- [:C] ATP
- [:D] Mitochondria

[:ANS] C

[:NQ]

[:Q.11] Which of the following is not a function of the vacuole in plants?

- [:A] They store toxic metabolic wastes
- [:B] They help with the process of cell division
- [:C] They help to maintain turgidity
- [:D] They provide structural support

[:ANS] B

[:NQ]

[:Q.12] The process by which water moves through a semi-permeable membrane from a region of high concentration to a region of lower concentration, thereby equalizing water concentration is called:

- [:A] Evaporation
- [:B] Diffusion
- [:C] Osmosis
- [:D] All of the above

[:ANS] C

[:NQ]

[:Q.13] Lysosomes are called suicide bags because

- [:A] It causes the cell to break its cell-membrane, causing death
- [:B] It kills the surrounding cells by releasing enzymes
- [:C] The enzymes are capable of digesting cells
- [:D] All of the above

[:ANS] D

[:NQ]

[:Q.14] is not found in xylem tissues.

- [:A] Sieve tubes
- [:B] Xylem parenchyma
- [:C] Tracheids
- [:D] Vessels

[:ANS] A

[:NQ]

[:Q.15] Which of the following is connective tissue?

- [:A] Ligament
- [:B] Tendon
- [:C] Blood
- [:D] All of the above

[:ANS] D

[:NQ]

[:Q.16] have cell walls made of chitin

- [:A] Fungi
- [:B] Green plants
- [:C] Human foetus
- [:D] All of the above

[:ANS] A

[:NQ]

[:Q.17] Most paramecium move with the help of

- [:A] Villi
- [:B] Oral grove
- [:C] Cilia
- [:D] Stationary

[:ANS] C

[:NQ]

[:Q.18] Which out of the following does not make sense?

- [:A] Solids have fixed shape and fixed volume.
- [:B] Liquids can be compressed easily, but not gases.
- [:C] The particles of solids have negligible kinetic energy.
- [:D] Property of diffusion is maximum in the gaseous state.

[:ANS] B

[:NQ]

[:Q.19] Which of the following is/are application(s) of high compressibility of gases?

- [:A] L.P.G. is used as fuel in homes for cooking food.
- [:B] Oxygen cylinders are supplied to hospitals.
- [:C] C.N.G. is used as fuel in vehicles.
- [:D] All of these

[:ANS] D

[:NQ]

[:Q.20] Which of the following statements does not go with the liquid state?

- [:A] Particles are loosely packed in the liquid state.

- [:B] Fluidity is the maximum in the liquid state.
- [:C] Liquids can be compressed.
- [:D] Liquids take up the shape of any container in which these are placed.

[:ANS] B

[:END]